It may at once be allowed that the view here given has not been accepted by physiologists. The bare fact that circumnutation is a general property of plants (other than climbing species) is not generally rejected. But the botanical world is no nearer to believing in the theory of reaction built on it.
If we compare the movements of plants with those of the lower animals we find a certain resemblance between the two. According to Jennings (H.S. Jennings, "The Behavior of the Lower Animals". Columbia U. Press, N.Y. 1906.) a Paramoecium constantly tends to swerve towards the aboral side of its body owing to certain peculiarities in the set and power of its cilia. But the tendency to swim in a circle, thus produced, is neutralised by the rotation of the creature about its longitudinal axis. Thus the direction of the swerves IN RELATION TO THE PATH of the organism is always changing, with the result that the creature moves in what approximates to a straight line, being however actually a spiral about the general line of progress. This method of motion is strikingly like the circumnutation of a plant, the apex of which also describes a spiral about the general line of growth. A rooted plant obviously cannot rotate on its axis, but the regular series of curvatures of which its growth consists correspond to the aberrations of Paramoecium distributed regularly about its course by means of rotation. (In my address to the Biological Section of the British Association at Cardiff (1891) I have attempted to show the connection between circumnutation and RECTIPETALITY, i.e. the innate capacity of growing in a straight line.) Just as a plant changes its direction of growth by an exaggeration of one of the curvature-elements of which circumnutation consists, so does a Paramoecium change its course by the accentuation of one of the deviations of which its path is built. Jennings has shown that the infusoria, etc., react to stimuli by what is known as the "method of trial." If an organism swims into a region where the temperature is too high or where an injurious substance is present, it changes its course. It then moves forward again, and if it is fortunate enough to escape the influence, it continues to swim in the given direction. If however its change of direction leads it further into the heated or poisonous region it repeats the movement until it emerges from its difficulties. Jennings finds in the movements of the lower organisms an analogue with what is known as pain in conscious organisms. There is certainly this much resemblance that a number of quite different sub-injurious agencies produce in the lower organisms a form of reaction by the help of which they, in a partly fortuitous way, escape from the threatening element in their environment. The higher animals are stimulated in a parallel manner to vague and originally purposeless movements, one of which removes the discomfort under which they suffer, and the organism finally learns to perform the appropriate movement without going through the tentative series of actions.
I am tempted to recognise in circumnutation a similar groundwork of tentative movements out of which the adaptive ones were originally selected by a process rudely representative of learning by experience.
It is, however, simpler to confine ourselves to the assumption that those plants have survived which have acquired through unknown causes the power of reacting in appropriate ways to the external stimuli of light, gravity, etc. It is quite possible to conceive this occurring in plants which have no power of circumnutating--and, as already pointed out, physiologists do as a fact neglect circumnutation as a factor in the evolution of movements. Whatever may be the fate of Darwin's theory of circumnutation there is no doubt that the research he carried out in support of, and by the light of, this hypothesis has had a powerful influence in guiding the modern theories of the behaviour of plants. Pfeffer ("The Physiology of Plants", Eng. Tr. III. page 11.), who more than any one man has impressed on the world a rational view of the reactions of plants, has acknowledged in generous words the great value of Darwin's work in the same direction. The older view was that, for instance, curvature towards the light is the direct mechanical result of the difference of illumination on the lighted and shaded surfaces of the plant. This has been proved to be an incorrect explanation of the fact, and Darwin by his work on the transmission of stimuli has greatly contributed to the current belief that stimuli act indirectly. Thus we now believe that in a root and a stem the mechanism for the perception of gravitation is identical, but the resulting movements are different because the motor-irritabilities are dissimilar in the two cases. We must come back, in fact, to Darwin's comparison of plants to animals. In both there is perceptive machinery by which they are made delicately alive to their environment, in both the existing survivors are those whose internal constitution has enabled them to respond in a beneficial way to the disturbance originating in their sense-organs.
By K. GOEBEL, Ph.D. Professor of Botany in the University of Munich.
There is scarcely any subject to which Darwin devoted so much time and work as to his researches into the biology of flowers, or, in other words, to the consideration of the question to what extent the structural and physiological characters of flowers are correlated with their function of producing fruits and seeds. We know from his own words what fascination these studies possessed for him. We repeatedly find, for example, in his letters expressions such as this:--"Nothing in my life has ever interested me more than the fertilisation of such plants as Primula and Lythrum, or again Anacamptis or Listera." ("More Letters of Charles Darwin", Vol. II. page 419.)
Expressions of this kind coming from a man whose theories exerted an epoch- making influence, would be unintelligible if his researches into the biology of flowers had been concerned only with records of isolated facts, however interesting these might be. We may at once take it for granted that the investigations were undertaken with the view of following up important problems of general interest, problems which are briefly dealt with in this essay.
Darwin published the results of his researches in several papers and in three larger works, (i) "On the various contrivances by which British and Foreign Orchids are fertilised by insects" (First edition, London, 1862; second edition, 1877; popular edition, 1904.) (ii) "The effects of Cross and Self fertilisation in the vegetable kingdom" (First edition, 1876; second edition, 1878). (iii) "The different forms of Flowers on plants of the same species" (First edition, 1877; second edition, 1880).
Copyright Notice
This article only represents the author's viewpoint and does not represent the position of our website< Br> This article is authorized for publication by the author and cannot be reproduced without permission.
comment